September 2013

AmCham EU's response to DG ENVI's public consultation relating to the REACH Annexes on Nanomaterials

Questions marked with * require an answer to be given

General information on the respondent

1. On what basis are you responding to this public consultation exercise?*

As an individual citizen	
On behalf of an organisation	X

2. Please specify the organisation you represent*

Private company	X
Government authority	
Academic/research institution	
Non-governmental organisation	
Industrial or trade association	
Consumer association	
Other	

If you answered 'Other' to question 2 then please give details below:

3. In which Member State is your organisation principally based? *

Austria		Germany	Poland	
Belgium	Х	Greece	Portugal	
Bulgaria		Hungary	Romania	

American Chamber of Commerce to the European Union Avenue des Arts/Kunstlaan 53, 1000 Brussels, Belgium Telephone 32-2-513 68 92 Fax 32-2-513 79 28 Email: <u>info@amchameu.eu</u> Public consultation response on REACH Annexes on Nanomaterials page 2 of 44

Croatia	Ireland	Slovakia
Cyprus	Italy	Slovenia
Czech	Latvia	Spain
Republic		
Denmark	Lithuania	Sweden
Estonia	Luxembourg	United
	_	Kingdom
Finland	Malta	None of the
		above
France	Netherlands	

4. How many employees does your company have? *

Large: >250	
Small: <50	X
Medium: <250	
Micro: <10	

5. The principle activity(ies) of the organisation you are responding on behalf...

Multiple answers should be possible^{*}

Manufacturing/importing chemicals	Х
Manufacturing/importing nanomaterials	X
Using chemicals	X
Using nanomaterials	X
Research institution	
Consumer organisation	
Environmental NGO	
Other	Trade association

If you answered 'Other' to question 5 then please give details below:

AmCham EU speaks for American companies committed to Europe on trade, investment and competitiveness issues.

6. Your role within the organisation you are responding on behalf of ... *

Board Director / Senior Manager	
Manager	
Researcher/Scientist	
Administrator	
Other	Policy Officer

If you answered 'Other' to question 6 then please give details below:

page 3 of 44

Policy Officer in charge of the AmCham EU Environment Committee and Nano Working Group

7. Your email address for correspondence*

jlk@amchameu.eu

8. What involvement has your organisation had within the last three years in relation to REACH? *

Directly involved	X
Indirectly involved	
Not involved	

9. What involvement has your organisation had within the last three years in relation to the regulation of nanomaterials? *

Directly involved	
Indirectly involved	X
Not involved	

10. How would you describe your knowledge of REACH? *

Excellent	X
Good	
Fair	
Bad	
None at all	

11. How would you describe your knowledge of nanomaterials? *

Excellent	Х
Good	
Fair	
Bad	
None at all	

Problem definition

In this next section we would like to establish your view of how nano materials are currently treated within REACH. It is important to stress that the focus is on the current registration provisions and information requirements for registration of nanomaterials.

12. What is your overall view of the current registration provisions and information requirements for the registration of nanomaterials? *

Very clear	
Clear	
Unclear	X
Very unclear	
Don't know	

13. If in Question 12 unclear requirements have been acknowledged, what do you consider is causing this? Can you assess the possible impacts of the suggested causes listed below?

	Strong impact on causing the problem	Some impact on causing the problem	No effect	Don't know
a. Absence of a definition of nanomaterial until October 2011*	X			
b. Determination of nanomaterial according to the current European Commission definition of nanomaterials [*]	X			
c. Current information requirements on how to describe the scope of registration*		X		
d. Current information requirements on substance identification [*]	X			
e. Current information requirements on physical- chemical properties [*]		X		

f. Current		Х	
information			
requirements on			
human health			
toxicity*			
g. Current		X	
information			
requirements on			
ecotoxicity and			
environmental			
fate*			
h. Current		Х	
information			
requirements on			
chemical safety			
assessment*			
i. Current	Х		
information			
requirements on			
use of grouping			
and category			
approaches for			
nanoforms and			
other adaptation			
of the testing			
regime*			
j. Current	X		
requirements on			
application of			
test methods and			
the relevance of			
results of tests			
performed on			
another form of			
material*			
k. Lack of		X	
specific			
guidance*			
1. Other	Χ		

If you answered 'Other' to question 13 then please give details below:

Due to the absence of validated measurement techniques, it is very difficult to determine conclusively and unambiguously whether a substance is a nanomaterial.

14. Do you believe there are any other areas of potential uncertainty or lack of clarity? Please set out below: (maximum 2000 characters)

The definition also covers not intentionally manufactured nanomaterials. This requires testing all powdered material to identify the percentage of nano. The inclusion of aggregates and agglomerates of primary nanoparticles in the definition and the lack of validated universal methods make this determination in real life situation unreliable.

15. In the next two questions we would like you compare the information requirements for nanomaterials with the information requirements for other forms of a substance under REACH. How would you compare the costs (money, time and administration) arising from the information requirements within the registration process for nanomaterials when compared to the

Significantly higher cost for	X (already due to determination
nanomaterials	whether the substance is nano)
Higher cost of compliance for	
nanomaterials	
No difference in relation to the cost of	
compliance between nanomaterials	
and other materials	
Lower cost of compliance for	
nanomaterials	
Significantly lower the cost of	
compliance for nanomaterials	
Don't know	

costs for other forms of a substance? *

16. How would you compare the impact on the safety of nanomaterials arising from the information requirements within the registration process for nanomaterials when compared to that for other forms of a substance? *

Significantly higher comparative safety	
for nanomaterials	
Higher comparative safety for	
nanomaterials	
No difference in relation to the safety of	X
nanomaterials and other materials	
Lower overall safety for nanomaterials	
Significantly lower comparative safety	
for nanomaterials	
Don't know	

	Significantly	Increase	No	Reduce	Significantly	Don't
	increase	clarity	difference	clarity	reduce	know
	clarity	-		-	clarity	
a. More specific		Х				
ECHA tools						
and guidance						
for						
nanomaterials*						
b. Application					Х	
of the						
Commission's						
definition of						
Nanomaterials*						
c. Introduction		Х				
of specific						
requirements in						
the REACH						
Annexes*						
d. Other	Χ					

17. What do you believe would be the impact of the following measures on clarity for registrants?

If you answered 'Other' to question 17 then please give details below:

Restriction of the definition to only cover intentionally engineered nanomaterials would clarify the requirements. Identification of nano size related characteristics that are already mature enough and measurable to use as regulatory requirement would add clarity. REACH should not be misused to gather data l'art pour l'art for future research.

The European Commission's definition of nanomaterials

This section is focused on the impact of the European Commission's definition of nanomaterials.

18. Has the Commission's definition on nanomaterials changed the number of nanomaterials in your company's portfolio?

Pursuant to the definition the number of nanomaterials in your company's portfolio has...*

Significantly increased	
Increased	Х
No change	
Decreased	
Significantly decreased	
Don't know	

Public consultation response on REACH Annexes on Nanomaterials

page 8 of 44

Not applicable	
11	

19. Has the Commission's definition on nanomaterials caused changes to your safety assessment or dossier preparation/update in your company?

How would you range the change in your safety assessment or dossier

preparation/update for nanoforms covered by the definition*

Significantly changed	
Changed	X
No difference	
Don't know	
Not applicable	

20. If you answered 'Significantly changed' or 'Changed' to question

19 then please give details below:*

Better characterization	X
Specific consideration of different forms	X
(e.g. relevance of test results)	
Separate safety consideration of	
different forms	
Anticipation of specific regulatory	X
provisions	
Other?	Х

If you answered 'Other' to question 20 then please give details below:

It depends whether the nanoform is a well characterised existing substance just 'caught' by the definition or an existing substance intentionally engineered in the nanoform.

Policy options

The focus for this section is to get your assessment as to the potential impact of five broad potential changes in the information requirements for the registration of nanomaterials under REACH. For each option we would like you to consider the potential impact on cost, safety and overall efficiency of the regulatory process.

The options will be measured against a 'baseline'. In the impact assessment the baseline will be titled 'option 1'. The baseline is a description of the current situation under REACH assuming no new policy actions but implementation based on what currently is known i.e. including the guidance update from April 2012 and full use of the Commission Recommendation on the definition of Nanomaterial. Moreover the baseline must make certain assumptions of how the current situation may develop over time when dossiers are brought into

compliance through updates, evaluation decisions, etc.

Option 2 – Clarity option

Currently many dossiers are of a quality falling below the baseline obligations. This is believed to be the case for several reasons including the lack of definition on Nanomaterialand specific guidance at the time of registration as well as that the existing information requirements are rather general and thus not targeting nanomaterials or even just multiplicity of forms within one dossier. This option therefore would introduce changes to certain Annex provisions clarifying what companies are expected to do in accordance with the registration obligations of REACH and the specific guidance which takes into account CA/59/2008 and the RIPoN 2 and 3 reports from 2011.

The measures are targeting more precise description of the scope of the dossier, clarification of requirements for nanoform specific information in a number of specific end-point sections, and clarification of how data is to be reported.

The measures needing clarification in this option are based on the advice the Commission requested from ECHA and the response given by ECHA in the context of the Nano-support project for this impact assessment. This option would not change any existing obligations as they are understood to exist, but it would provide companies with a clearer understanding on what information they must provide in the registration dossier. This would be a help to companies and ECHA alike.

A measure marked with '*' is supposed to be introduced in the REACH Annexes for substance identification, physico-chemical properties, human health hazards, environmental fate and environmental hazards. A measure marked with '**' refers to human health hazards, environmental fate and environmental hazards only.

In the next three questions we would like you to consider the different impacts of measures taken under the Option 2.

21. Considering firstly the potential impact of the following measures on the <u>cost</u> of providing information to register nanomaterials under the provisions of REACH

	Significantly	Increases	Have no	Reduce the	Significantly	Don't
	increase the	the cost of	impact on	costs of	reduce the	know
	cost of	compliance	the cost of	compliance	cost of	
	compliance		compliance		compliance	
a. Explicitly require registrants to describe the scope of the registration dossier*		Х				
b. Explicitly require	Х					

registrants to provide more				
detailed characterization of				
nanomaterials/nanoforms	V			
c. *Require that hanolorms are explicitly addressed in	Λ			
the endpoint sections $*$				
d. *Require detailed	Х			
description of the test				
material / sample and				
sample preparation*				
e. *Require scientific		Х		
Justifications for grouping				
other non-testing				
approaches for different				
forms*				
f. **Require		Х		
considerations of most				
appropriate / relevant				
presentation in several				
matrice*				
g Require that	x			
bioaccumulation is	7 x			
addressed specifically for				
the nanoform $*$				
h. Specify that	Х			
absorption/desorption				
should not be assessed				
based on K_d values derived				
from K_{oc} and K_{ow}				
i.Require identification of	X			
uses and exposure				
assessment of the				
nanoform [*]	V			
J. When considered	Х			
believe the impact of the				
measures outlined above				
would be? *				

22. Secondly considering the potential impact of the following measures on the <u>safety</u> of nanomaterials

Significantly increase the filave no fieldade the Significantly Don't

	increase the	safe use of	impact on the	safe use of	reduces the	know
	safe use of	nanomaterials	safe use of	nanomaterials	safe use of	
	nanomaterials		nanomaterials		nanomaterials	
a. Explicitly require			X			
registrants to describe the						
scope of the registration						
dossier*						
b. Explicitly require			X			
registrants to provide more						
detailed characterization of						
nanomaterials/nanoforms*						
c. *Require that nanoforms			Х			
are explicitly addressed in						
the endpoint sections $*$						
d. *Require detailed			Х			
description of the test						
material / sample and						
sample preparation*						
e. *Require scientific		Х				
justifications for grouping						
/ read across / QSAR and						
other non-testing						
approaches for different						
forms*						
f. **Require		Х				
considerations of most						
appropriate / relevant						
metric with preferable						
presentation in several						
metrics*						
g. Require that			Х			
bioaccumulation is						
addressed specifically for						
the nanoform [*]						
h. Specify that			Х			
absorption/desorption						
behavior of nanomaterials						
should not be assessed						
based on K _d values derived						
from K_{oc} and K_{ow}^*						
i. Require identification of	X					
uses and exposure						
assessment of the						
nanoform [*]						
j. When considered			X			
together what do you						

believe the impact of the			
measures outlined above			
would be? *			

23. Finally considering the overall potential impact of the following measures on the <u>efficiency</u> of the regulatory process within REACH in terms of striking a balance between appropriate demonstration of safe use and the cost (money, time and administration) ti will take to do it.

	Significantly	Higher	No difference	Lower	Significantly	Don't
	higher overall	overall	in relation to	overall	lower overall	know
	efficiency for	efficiency for	the overall	efficiency for	efficiency for	
	the regulation	the regulation	efficiency	the regulation	the regulation	
	of	of	between	of	of	
	nanomaterials	nanomaterials	nanomaterials	nanomaterials	nanomaterials	
			and other			
. Frantisidas as secias			materials			
a. Explicitly require			Χ			
registrants to describe the						
scope of the registration						
dossier*						
b. Explicitly require			Х			
registrants to provide more						
detailed characterization of						
nanomaterials/nanoforms*						
c. *Require that nanoforms			Х			
are explicitly addressed in						
the endpoint sections $*$						
d. *Require detailed			Х			
description of the test						
material / sample and						
sample preparation*						
e. *Require scientific			Х			
justifications for grouping						
/ read across / QSAR and						
other non-testing						
approaches for different						
forms*						
f. **Require			Х			
considerations of most						
appropriate / relevant						
metric with preferable						
presentation in several						
metrics*						
g. Require that			Х			
bioaccumulation is						

Public consultation response on REACH Annexes on Nanomaterials page 13 of 44

addressed specifically for				
the nanoform*				
h. Specify that		Х		
absorption/desorption				
behavior of nanomaterials				
should not be assessed				
based on K _d values derived				
from K_{oc} and K_{ow} *				
i. Require identification of		Х		
uses and exposure				
assessment of the				
nanoform [*]				
j. When considered		X		
together what do you				
believe the impact of the				
measures outlined above				
would be? *				

Option 3 – Soft law

This option introduces measures of a non-legally binding nature with a view to provide moreclarity. Measures could include updates of guidance, FAQs, CARACAL documents, Directors Contact Group and all other sorts of actions that can take place without changing any legalprovisions.Soft law is the term applied to EU measures, such as guidelines, declarations and opinions, which, in contrast to **Directives**, **Regulations** and decisions, are not binding on those to whom they are addressed. However, soft law can produce some legal effects.

In the next three questions we would like you to consider the different impacts of measures taken under the Option 3.

24. Considering firstly the potential impact of the following measures on the <u>cost</u> of providing information to register nanomaterials under the provisions of REACH.

	Significantly	Increases	Have no	Reduce the	Significantly	Don't
	increase the	the cost of	impact on	costs of	reduce the	know
	cost of	compliance	the cost of	compliance	cost of	
	compliance		compliance		compliance	
a. Development of further ECHA guidance and other?*			X			
b. Enhanced use of the			Х			

Directors				
Contact				
Group*				
c. Initiatives	Х			
to enhance				
information				
and				
dissemination				
at EU and				
Member				
State level *				
d. When		Х		
considered				
together				
what do you				
believe the				
impact of				
the				
measures				
outlined				
above would				
be? <mark>*</mark>				

25. Secondly considering the potential impact of the following measures on the <u>safety</u> of nanomaterials

	Significantly	Increase the	Have no	Reduce the	Significantly	Don'
	increase the	safe use of	impact on the	safe use of	reduces the	t
	safe use of	nanomaterials	safe use of	nanomaterials	safe use of	know
	nanomaterials		nanomaterials		nanomaterials	
a.		Х				
Development						
of further						
ECHA						
guidance and						
other?*						
b. Enhanced			Х			
use of the						
Directors						
Contact						
Group*						
c. Initiatives			Χ			
to enhance						
information						
and						
dissemination						
at EU and						
Member						

Public consultation response on REACH Annexes on Nanomaterials

page 15 of 44

State level*				
d. When		Х		
considered				
together				
what do you				
believe the				
impact of				
the				
measures				
outlined				
above would				
be? *				

26. Finally considering the overall potential impact of the following measures on the <u>efficiency</u> of the regulatory process within REACH in terms of striking a balance between appropriate demonstration of safe use and the cost (money, time and administration) it will take to do it.

	Significantly	Higher	No difference	Lower	Significantly	Don't
	higher overall	overall	in relation to	overall	lower overall	know
	efficiency for	efficiency for	the overall	efficiency for	efficiency for	
	the regulation	the regulation	efficiency	the regulation	the regulation	
	of	of	between	of	of	
	nanomaterials	nanomaterials	nanomaterials	nanomaterials	nanomaterials	
			and other			
			materials			
a.	Х					
Development						
of further						
ECHA						
guidance and						
other?*						
b. Enhanced			Х			
use of the						
Directors						
Contact						
Group*						
c. Initiatives				Х		
to enhance						
information						
and						
dissemination						
at EU and						
Member						
State level*						
d. When			X			
considered						

page 16 of 44

together			
what do you			
impost of			
the			
maggurag			
outlined			
above would			
be? *			

Option 4

The option contains additional measures that are generally – from a scientific or technical perspective - recommended to demonstrate safe use in cases where the existing information requirements in REACH are not tailored for nanomaterials or where specific considerations are required for nanomaterials. **The option is assuming fullimplementation of Option 2**.

The measures in this option are based on the advice the Commission requested from ECHA and the response given by ECHA in the context of the Nanosupport project for this impact assessment. Measures are likely to be; revised or additional endpoints for, nanomaterials, e.g. in low tonnages; inhalation exposure route for acute toxicity and repeated dose toxicity studies; and a nonbacterial gene mutation study (in vitro); in all annexes exclusion of waiving possibility on the basis of insolubility or lack of short term toxicity, and a priority for test on soil and sediment organisms.Most provisions are listed as applicable to nanoforms. This limits the scope of the measure to be applicable to nanomaterials only.

A measure marked with '*' is supposed to be introduced in the REACH Annexes for environmental fate and environmental hazards. A measure marked with '**' on the other hand refers to exposure assessment and risk characterisation.

In the next three questions we would like you to consider the different impacts of measures taken under the Option 4.

27. Considering firstly the potential impact of the following measures on the <u>cost</u> of providing information to register nanomaterials under the provisions of REACH

	Significantly	Increases	Have no	Reduce the	Significantly	Don't
	increase the	the cost of	impact on	costs of	reduce the	know
	cost of	compliance	the cost of	compliance	cost of	
	compliance	_	compliance	_	compliance	
a.Include			Х			
information on						
dustiness*						
b. Require acute		Х				

toxicity data for the most relevant route of				
exposure*				
c. Change 'particles' to '(nano)particles' for repeated dose toxicity studies	X			
(inhalation) *		**	 	
d. Require non- bacterial in vitro		X		
gene mut [*] ation study				
e. *Consider water solubility in relation to		Х		
f *Specify that		X		
long term testing should not be waived based on lack of short term		Λ		
toxicity*				
g. Specify that algae testing should not be waived based		Х		
on insolubility*	**			
n. Require that testing on soil and sediment organisms is	X			
prioritized*		V		
1.**Require consideration of most appropriate / relevant metric with preferable presentation in		X		
several metrics*				
i. When		X	 	

page 18 of 44

considered			
together what			
do you believe			
the impact of			
the measures			
outlined above			
would be? *			

28. Secondly considering the potential impact of the following measures on the <u>safety</u> of nanomaterials

	Significantly	Increase the	Have no	Reduce the	Significantly	Don't
	increase the	safe use of	impact on the	safe use of	reduces the	know
	safe use of	nanomaterials	safe use of	nanomaterials	safe use of	
	nanomaterials		nanomaterials		nanomaterials	
a. Include		Х				
information on						
dustiness*						
b. Require acute			Х			
toxicity data for						
the most						
relevant route of						
exposure*						
c. Change			X			
'particles' to						
'(nano)particles'						
for repeated						
dose toxicity						
studies						
(inhalation) *						
d. Require non-		Χ				
bacterial in vitro						
gene mutation						
study *						
e. *Consider			Χ			
water solubility						
in relation to						
test waiving*						
f. *Specify that			Х			
long term						
testing should						
not be waived						
based on lack of						
short term						
toxicity*						
g. Specify that		Х				
algae testing						

page 19 of 44

should not be				
waived based				
on insolubility*				
h. Require that		Х		
testing on soil				
and sediment				
organisms is				
prioritized*				
i.**Require		Х		
consideration of				
most				
appropriate /				
relevant metric				
with preferable				
presentation in				
several				
metrics*				
j. When		Х		
considered				
together what				
do you believe				
the impact of				
the measures				
outlined above				
would be? *				

29. Finally considering the overall potential impact of the following measures on the <u>efficiency</u> of the regulatory process within REACH in terms of striking a balance between appropriate demonstration of safe use and the cost (money, time and administration) it will take to do it.

	Significantly	Higher	No difference	Lower	Significantly	Don't
	higher overall	overall	in relation to	overall	lower overall	know
	efficiency for	efficiency for	the overall	efficiency for	efficiency for	
	the regulation	the regulation	efficiency	the regulation	the regulation	
	of	of	between	of	of	
	nanomaterials	nanomaterials	nanomaterials	nanomaterials	nanomaterials	
			and other			
			materials			
a. Include			Х			
information on						
dustiness*						
b. Require acute				Х		
toxicity data for						
the most						
relevant route of						

exposure*				
c. Change			Х	
'particles' to				
'(nano)particles'				
for repeated				
dose toxicity				
studies				
(inhalation) *				
d. Require non-		Х		
bacterial in vitro				
gene mutation				
study ·		37		
e. *Consider		Х		
water solubility				
in relation to				
test waiving*	 			
f. *Specify that			Х	
long term				
testing should				
not be waived				
based on lack of				
short term				
toxicity*				
g. Specify that		Х		
algae testing				
should not be				
waived based				
on insolubility*				
h. Require that			Х	
testing on soil				
and sediment				
organisms is				
prioritized*				
i **Require		X		
consideration of		21		
most				
appropriate /				
relevant metric				
with preferable				
presentation in				
several				
metrics*				
j. When			Х	
considered				
together what				
do you believe				

the impact of			
the measures			
outlined above			
would be? *			

Option 5

In light of the economic and innovation potential of nanomaterials, this option aims to enhance competitiveness and innovation of companies by providing greater specificity to core implementation issues and by reducing the economic burden for complying with REACH. The proposed measures foresee tailored information requirements for nanomaterials placed on the market, reduce certain information requirements, clarify regulatory provisions, maximize the use of non-testing methods and exposure categorisation, and maintain openness to flexible solutions.

In the next three questions we would like you to consider the different impacts of measures taken under the Option 5.

30. Considering firstly the potential impact of the following measures on the <u>cost</u> of providing information to register nanomaterials under the provisions of **REACH**

	Significantly	Increases	Have no	Reduce the	Significantly	Don't
	increase the	the cost of	impact on	costs of	reduce the	know
	cost of	compliance	the cost of	compliance	cost of	
	compliance	-	compliance	-	compliance	
a. Describe whether		Х				
and which different						
nanoforms are covered						
in the chemical safety						
assessment, including						
a statement when and						
how information on						
one form is used to						
demonstrate safety of						
other forms*						
b. Specify that					Х	
nanoform specific						
information is						
required only when an						
insoluble or poorly						
soluble nanoform put						
on the market is						
classified						
hazardous/dangerous*						
c. Specify that a				Χ		

coated nanomaterial is					
considered as a special					
mixture e g in					
classification and					
labeling as accented					
labeling as accepted					
e.g. alloys					
d. Specify that the	Х				
granulometry concept					
in 7.14 of Annex VII					
includes also shape					
and surface area of					
*					
nanomaterials					
e. Specify that the		Х			
information on					
dustiness is required					
for nanoforms only					
where relevant for the					
worker safety					
assassment*					
f Specify that waiving			Y		
of and point aposific			Δ		
information					
information					
requirements for					
classified insoluble or					
poorly soluble					
nanoforms applies as					
for any other forms					
and also when					
nanoforms do not					
significantly differ					
from each other in					
from each other m					
specific endpoints*					
g. Specify that the use				X	
of non-testing					
methods (e.g. read					
across, grouping,					
categorisation etc.					
methods) is a priority					
for nonoforms*					
tor manororms				V	
n. Specify and require				Λ	
explicitly that waiving					
of testing on the basis					
of exposure conditions					
and categories applies					
also for nanoforms, in					
particular when					
nanoforms are					
completely reacted					

(cured), incorporated or embedded into a completely cured matrix or permanent solid polymer forms, or otherwise used in closed systems or controlled conditions [*]					
i. Specify that absorption/desorption behavior of nanoforms can be based on biological surface adsorption index, affinity coefficient or other relevant parameters*			X		
j. No specific obligations for nanoforms in 1-10 tonnage band*		Х			
k. No specific obligations for nanoforms in 10-100 tonnage band*			X		
1. No nanomaterial specific obligation for 2 nd exposure route at 10-100 tonnage band for acute toxicity*			X		
m. Specify that information generated according to existing test guidelines and/or test methods is sufficient for the purposes of hazard assessment of nanomaterials under				Χ	
REACH*				v	
n. A nanotorm consisting of aggregates is considered same as bulk form and the same endpoint				Λ	

information for					
(eco)toxicological and					
environmental fate					
apply *					
o. No specific				Х	
obligations for					
nanoforms to provide					
ecotoxicological and					
environmental fate					
information*					
p. Create presumption			Х		
that non-testing					
methods are valid for					
nanomaterials in all					
endpoints*					
q. Amend the		Х			
granulometry					
information					
requirements in Annex					
VII (1-10 tonnage					
band) for					
nanomaterials in line					
Q 1 a of REACH on					
Safety Data Sheet and					
respective FCHA					
Guidance on					
Compilation of Safety					
Data Sheets*					
r Specify explicitly				X	
that coating agents of				21	
nanoforms are					
registered separately					
in line with practices					
already accepted for					
e.g. alloys*					
s. Reduce the set of				Х	
combined methods for					
nanomaterials					
determination					
(Nanomaterial					
definition,					
EU/2011/696) to only					
one (e.g. DLS) *				X 7	
t. For the purposes of				Х	
KEACH, consider					
aggregates as					

constituent particle (primary particle) in the nanomaterial definition (EU/2011/606) *				
u. Omit mutagenicity and acute toxicity tests in lower tonnages. No skin irritation, skin corrosion or <i>in vitro</i> eye irritation information required for 10-100 t/y if the assessments in 1-10 t/y has been negative*			X	
v. When considered together what do you believe the impact of the measures outlined above would be? *			X	

31. Secondly considering the potential impact of the following measures on the <u>safety</u> of nanomaterials

	Significantly	Increase the	Have no	Reduce the	Significantly	Don't
	increase the	safe use of	impact on the	safe use of	reduces the	know
	safe use of	nanomaterials	safe use of	nanomaterials	safe use of	
	nanomaterials		nanomaterials		nanomaterials	
a. Describe whether		Χ				
and which different						
nanoforms are covered						
in the chemical safety						
assessment, including						
a statement when and						
how information on						
one form is used to						
demonstrate safety of						
other forms*						
b. Specify that			Χ			
nanoform specific						
information is						
required only when an						
insoluble or poorly						
soluble nanoform put						
on the market is						
classified						
hazardous/dangerous*						

	1	1	1	1	
c. Specify that a			Х		
coated nanomaterial is					
considered as a special					
mixture e.g. in					
classification and					
labeling as accepted					
e.g. alloys*					
d. Specify that the			Х		
granulometry concept					
in 7.14 of Annex VII					
includes also shape					
and surface area of					
nanomaterials*					
e. Specify that the			X		
information on					
dustiness is required					
for nanoforms only					
where relevant for the					
worker safety					
assessment*					
f. Specify that waiving			Х		
of endpoint specific					
information					
requirements for					
classified insoluble or					
poorly soluble					
nanoforms applies as					
for any other forms					
and also when					
nanoforms do not					
significantly differ					
from each other in					
specific endpoints*					
g. Specify that the use			X		
of non-testing					
methods (e.g. read					
across, grouping,					
categorisation etc.					
methods) is a priority					
for nanoforms*			**		
n. Specify and require			Х		
explicitly that waiving					
of testing on the basis					
of exposure conditions					
and categories applies					
also for nanoforms, in					
particular when					
nanotorms are					

completely reacted				
(cured), incorporated				
or embedded into a				
completely cured				
matrix or permanent				
solid polymer forms,				
or otherwise used in				
closed systems or				
controlled				
controlled				
conditions*				
i. Specify that		Х		
absorption/desorption				
behavior of nanoforms				
can be based on				
biological surface				
adsorption index				
affinity coefficient or				
athen relevant				
other relevant				
parameters*				
j. No specific		Х		
obligations for				
nanoforms in 1-10				
tonnage band*				
k. No specific		Х		
obligations for				
nanoforms in 10-100				
tonnage band				
l. No nanomaterial		Х		
specific obligation for				
2^{nd} exposure route at				
10-100 tonnage band				
for acute toxicity				
m. Specify that		Х		
information generated				
according to existing				
test guidelines and/or				
test methods is				
sufficient for the				
purposes of hazard				
assessment of				
nanomateriale under				
REACH*		V		
n. A nanotorm		Λ		
consisting of				
aggregates is				
considered same as				
bulk form and the				

same endpoint information for				
(eco)toxicological and environmental fate				
apply*				
o. No specific		X		
nanoforms to provide				
ecotoxicological and				
environmental fate				
information*				
p. Create presumption			X	
that non-testing methods are valid for				
nanomaterials in all				
endpoints*				
q. Amend the		Х		
granulometry				
requirements in Annex				
VII (1-10 tonnage				
band) for				
nanomaterials in line				
with Annex II, Section				
9.1.a of REACH on Sofety Date Sheet and				
respective ECHA				
Guidance on				
Compilation of Safety				
Data Sheets*				
r. Specify explicitly		X		
that coating agents of				
registered separately				
in line with practices				
already accepted for				
e.g. alloys*				
s. Reduce the set of	X			
combined methods for				
determination				
(Nanomaterial				
definition,				
EU/2011/696) to only				
one (e.g. DLS) *				
t. For the purposes of REACH consider		X		

aggregates as				
constituent particle				
(primary particle) in				
the nanomaterial				
definition				
(EU/2011/696) *				
u. Omit mutagenicity		Х		
and acute toxicity tests				
in lower tonnages. No				
skin irritation, skin				
corrosion or in vitro				
eye irritation				
information required				
for 10-100 t/y if the				
assessments in 1-10				
t/y has been negative*				
v. When considered		Х		
together what do you				
believe the impact of				
the measures				
outlined above would				
be? *				

32. Finally considering the overall potential impact of the following measures on the <u>efficiency</u> of the regulatory process within REACH in terms of striking a balance between appropriate demonstration of safe use and the cost (money, time and administration) it will take to do it.

	Significantly	Higher	No difference	Lower	Significantly	Don't
	higher overall	overall	in relation to	overall	lower overall	know
	efficiency for	efficiency for	the overall	efficiency for	efficiency for	
	the regulation	the regulation	efficiency	the regulation	the regulation	
	of	of	between	of	of	
	nanomaterials	nanomaterials	nanomaterials	nanomaterials	nanomaterials	
			and other			
			materials			
a. Describe whether		Х				
and which different						
nanoforms are covered						
in the chemical safety						
assessment, including						
a statement when and						
how information on						
one form is used to						
demonstrate safety of						
other forms*						
b. Specify that		Х				

nanoform specific information is required only when an insoluble or poorly soluble nanoform put on the market is classified			
nazardous/dangerous	V		
c. Specify that a coated nanomaterial is considered as a special mixture e.g. in classification and labeling as accepted e.g. alloys [*]	X		
d. Specify that the granulometry concept in 7.14 of Annex VII includes also shape and surface area of nanomaterials*		X	
e. Specify that the information on dustiness is required for nanoforms only where relevant for the worker safety assessment*	X		
f. Specify that waiving of endpoint specific information requirements for classified insoluble or poorly soluble nanoforms applies as for any other forms and also when nanoforms do not significantly differ from each other in specific endpoints*	X		
g. Specify that the use of non-testing methods (e.g. read across, grouping, categorisation etc. methods) is a priority	X		

Public consultation response on REACH Annexes on Nanomaterials page 31 of 44

for nanoforms*					
h. Specify and require	Х				
explicitly that waiving					
of testing on the basis					
of exposure conditions					
and categories applies					
also for nanoforms, in					
particular when					
nanoforms are					
completely reacted					
(cured), incorporated					
or embedded into a					
completely cured					
matrix or permanent					
solid polymer forms,					
or otherwise used in					
closed systems or					
controlled					
conditions*					
i. Specify that		X			
absorption/desorption					
behavior of nanoforms					
can be based on					
biological surface					
adsorption index,					
affinity coefficient or					
other relevant					
parameters*					
j. No specific		X			
obligations for					
nanoforms in 1-10					
tonnage band*					
k. No specific			X		
obligations for					
nanoforms in 10-100					
tonnage band *					
1. No nanomaterial			X		
specific obligation for					
2^{nd} exposure route at					
10-100 tonnage band					
for acute toxicity*					
m. Specify that		Х			
information generated					
according to existing					
test guidelines and/or					
test methods is					
sufficient for the					

purposes of hazard					
assessment of					
nanomaterials under					
REACH [*]					
n. A nanoform	Х				
consisting of					
aggregates is					
considered same as					
bulk form and the					
same endpoint					
information for					
(eco)toxicological and					
environmental fate					
apply*					
o. No specific		X			
obligations for					
nanoforms to provide					
ecotoxicological and					
environmental fate					
information*					
p. Create presumption		Х			
that non-testing					
methods are valid for					
nanomaterials in all					
endpoints*					
q. Amend the			Х		
granulometry					
information					
requirements in Annex					
VII (1-10 tonnage					
band) for					
nanomaterials in line					
with Annex II, Section					
9.1.a of REACH on					
Safety Data Sheet and					
respective ECHA					
Guidance on					
Compliation of Safety					
Data Sheets*		**			
r. Specify explicitly		Х			
mat coating agents of					
nanoiorms are					
in line with presting					
already accepted for					
e.g. alloys *					
s. Reduce the set of		Х			

page 33 of 44

combined methods for				
nanomaterials				
determination				
(Nanomaterial				
definition,				
EU/2011/696) to only				
one (e.g. DLS) *				
t. For the purposes of	X			
REACH, consider				
aggregates as				
constituent particle				
(primary particle) in				
the nanomaterial				
definition				
(EU/2011/696) *				
u. Omit mutagenicity		Χ		
and acute toxicity tests				
in lower tonnages. No				
skin irritation, skin				
corrosion or in vitro				
eye irritation				
information required				
for 10-100 t/y if the				
assessments in 1-10				
t/y has been negative $*$				
v. When considered		Х		
together what do you				
believe the impact of				
the measures				
outlined above would				
be? *				

Option 6

With this option additional emphasis is put on generation of targeted information with the objective of reduction of uncertainty considering that knowledge is still under development regarding the influence of particle and nanomaterial specific properties on risk. Information generated should also facilitate development of category approaches with all the associated impacts.

Physico-chemical characterisation of different forms covered by the dossier and all their uses, with particular attention given to materials where the forms could change, would be diligently pursued. More specific information will then be requested to be organised separately in the registration dossier with a view to make it easily accessible upon review.

Option 6 assumes full implementation of the measures described in

Option 4, and therefore also the complete Option 2.

In the next three questions we would like you to consider the different impacts of measures taken under the Option 6.

33. Considering firstly the potential impact of the following measures on the <u>cost</u> of providing information to register nanomaterials under the provisions of REACH

	Significantly increase the	Increases the cost of	Have no impact on	Reduce the costs of	Significantly reduce the	Don't know
	cost of compliance	compliance	the cost of compliance	compliance	cost of compliance	
a. Apply clear		Х				
rules on when						
nanoforms can						
dession on in						
separate ones						
based on						
possibility for						
data sharing *						
b. Introduce	Х					
rules to ensure						
mandatory						
separation						
between						
identified and						
addressed in the						
dossier						
whenever they						
differ in						
coating, shape,						
crystalline form						
or prescribed						
classes of						
particle size						
distribution*						
c. Information		X				
requirements for						
substances						
Apply III (b)						
must also apply						
to nanotorms						
d. For	X					
nanoiorins,	(impractical)					

information on potential alterations of hazard due to operational conditions upstream the exposure situation is considered [*]				
e. For nanoforms, require all available information on the use in considered, even when the use would not be covered by the	X (Impractical)			
registration* f. For nanoforms, require additional physic-chemical characterization along the particle's fate when particle properties impacts on hazard*	X			
g. Phys-chem, (eco)tox and CSA documented separately for each nanoform [*]	X			
h. For nanoforms, explicitly limit the potential for use of non- testing approaches for		X		

hazard and				
exposure where				
science is not				
consolidated,				
but encourage				
its parallel				
application and				
documentation*				
i.Require	X			
adapted DNEL				
setting based on				
different routes				
through the				
value chain /				
specific uses*				
j. Add to the	X			
SDS				
information				
relevant to Nano				
registries in				
Member				
States*				
k. Specify that	X			
list of				
substances in				
Annexes IV and				
V does not				
cover				
nanoforms of				
these				
substances*	*7			
I. Choose	X			
inhalation as the				
appropriate				
route of				
exposure in				
toxicity study				
upless such				
exposure can be				
excluded *		V		
in. remorin toxicolanatio		Λ		
toxicokinetic				
screening*	V			
n. For	Χ			
nanoiorms,				
request 28 day				

Public consultation response on REACH Annexes on Nanomaterials page 37 of 44

repeated dose toxicity in				
Annex VII*				
o. When	Х			
considered				
together what				
do you believe				
the impact of				
the measures				
outlined above				
would be? *				

34. Secondly considering the potential impact of the following measures on the <u>safer</u> handling of nanomaterials

	Significantly	Increase the	Have no	Reduce the	Significantly	Don't
	increase the	safe use of	impact on the	safe use of	reduces the	know
	safe use of	nanomaterials	safe use of	nanomaterials	safe use of	
	nanomaterials		nanomaterials		nanomaterials	
a. Apply clear			Х			
rules on when						
nanoforms can						
be in one						
dossier or in						
separate ones						
based on						
possibility for						
data sharing*						
b. Introduce			Х			
rules to ensure						
mandatory						
separation						
between						
nanoforms						
identified and						
addressed in the						
dossier						
whenever they						
differ in						
coating, shape,						
crystalline form						
or prescribed						
classes of						
particle size						
distribution*						
c. Information			Х			
requirements for						
substances						

covered by				
Annex III (b)				
must also apply				
to nanoforms*				
d For		x		
nanoforms		21		
require all				
information on				
potential				
alterations of				
hazard due to				
operational				
conditions				
upstream the				
exposure				
situation is				
considered*				
e For		X		
nanoforms.				
require all				
available				
information on				
the use in				
considered,				
even when the				
use would not				
be covered by				
the				
registration*				
f. For		Х		
nanoforms,				
require				
additional				
physic-chemical				
characterization				
along the				
particle's fate				
when particle				
properties				
impacts on				
hazard [*]				
g. Phys-chem,		Х		
(eco)tox and				
CSA				
documented				
separately for				
each				
nanoform*				

h. For		Х		
nanoforms,				
explicitly limit				
the potential for				
use of non-				
testing				
approaches for				
hazard and				
exposure where				
science is not				
consolidated,				
but encourage				
its parallel				
application and				
do our montation *				
		V		
1. Require		Λ		
adapted DNEL				
different routes				
through the				
unough me				
specific uses*				
j. Add to the		X		
SDS				
information				
relevant to Nano				
registries in				
Member				
States [*]				
k. Specify that		Х		
list of				
substances in				
Annexes IV and				
V does not				
cover				
nanoforms of				
these				
substances*				
1. Choose		Х		
inhalation as the				
appropriate				
route of				
exposure in				
repeated dose				
toxicity study				
unless such				
exposure can be				
excluded*				

page 40 of 44

m. Perform		Х		
toxicokinetic				
screening*				
n. For		Х		
nanoforms,				
request 28 day				
repeated dose				
toxicity in				
Annex VII [*]				
o. When		Х		
considered				
together what				
do you believe				
the impact of				
the measures				
outlined above				
would be? *				

35. Finally considering the overall potential impact of the following measures on the <u>efficiency</u> of the regulatory process within REACH in terms of striking a balance between appropriate demonstration of safe use and the cost (money, time and administration) it will take to do it.

	Significantly	Higher	No difference	Lower	Significantly	Don't
	higher overall	overall	in relation to	overall	lower overall	know
	efficiency for	efficiency for	the overall	efficiency for	efficiency for	
	the regulation	the regulation	efficiency	the regulation	the regulation	
	of	of	between	of	of	
	nanomaterials	nanomaterials	nanomaterials	nanomaterials	nanomaterials	
			and other			
			materials			
a. Apply clear				Х		
rules on when						
nanoforms can						
be in one						
dossier or in						
separate ones						
based on						
possibility for						
data sharing*						
b. Introduce					Х	
rules to ensure						
mandatory						
separation						
between						
nanoforms						
identified and						

addressed in the dossier whenever they differ in coating, shape, crystalline form or prescribed classes of					
particle size					
c. Information requirements for substances covered by Annex III (b) must also apply to nanoforms*			X		
d. For nanoforms, require all information on potential alterations of hazard due to operational conditions upstream the exposure situation is considered [*]		Χ			
e. For nanoforms, require all available information on the use in considered, even when the use would not be covered by the				X	
registration [*] f. For nanoforms, require additional physic-chemical characterization	X				

along the				
particle's fate				
when particle				
properties				
impacts on				
hozord*				
		V		
g. Phys-chem,		Λ		
(eco)tox and				
CSA				
documented				
separately for				
each				
nanoform*				
h. For			Х	
nanoforms,				
explicitly limit				
the potential for				
use of non-				
testing				
approaches for				
hazard and				
exposure where				
science is not				
consolidated.				
but encourage				
its parallel				
application and				
1 ***				
documentation •			**	
1. Require			X	
adapted DNEL				
setting based on				
different routes				
through the				
value chain /				
specific uses*				
j. Add to the			Х	
SDS				
information				
relevant to Nano				
registries in				
Member				
States*				
braits			v	
K. Specify that			Λ	
nist OI				
A provide the state of the stat				
Annexes IV and				
v does not				
cover				

page 43 of 44

nanoforms of				
these				
substances*				
1. Choose	Х			
inhalation as the				
appropriate				
route of				
exposure in				
repeated dose				
toxicity study				
unless such				
exposure can be				
excluded*				
m. Perform	Х			
toxicokinetic				
screening*				
n. For			Х	
nanoforms,				
request 28 day				
repeated dose				
toxicity in				
Annex VII [*]				
o. When			X	
considered				
together what				
do you believe				
the impact of				
une measures				
would be? 🌋				

36. Are there other policy measures that should be considered? (maximum 2000 characters)

We strongly recommend that any measure specifically addressing the nano forms of existing substances should be based on the potential for exposure to this form.

We also recommend of introducing measures which are harmonized with the US requirements for the same substances.

Overall Assessment of Options

Finally we would like you to consider the potential impact of each of the options set out above.

37. Considering the overall potential impact of each of the options on the efficiency of the regulatory process within REACH in terms of striking a balance between appropriate demonstration of safe use and the cost (money, time and administration) it will take to do it.

	Significantly	Higher	No difference	Lower	Significantly	Don't
	higher overall	overall	in relation to	overall	lower overall	know
	efficiency for	efficiency for	the overall	efficiency for	efficiency for	
	the regulation	the regulation	efficiency	the regulation	the regulation	
	of	of	between	of	of	
	nanomaterials	nanomaterials	nanomaterials	nanomaterials	nanomaterials	
			and other			
			materials			
a. Do			Х			
nothing						
(option						
1) *						
b.			Х			
Option						
2 *						
с.				Х		
Option						
3 *						
d.				Х		
Option						
4 [*]						
е.		Х				
Option						
5 *						
f.					Х	
Option						
6 [*]						

38. What is your preferred option? Explain why? (maximum 2000 characters)*

We prefer Option 5, as this is the only option that considers exposure as a basis for waiving testing requirements. We also prefer in this option the ability to assess coated nanomaterials as a special mixture of the core substance and the coating component and to consider aggregates as similar to the bulk form. However, instead of accepting Option 5 as it is, we envisage an option that combines certain elements of Option 5, together with elements of other options where the efficiency of the measure was rated significantly higher or higher; offering an optimal cost/benefit (safety) ratio.